پیشبینی بارش ماهانه با استفاده از شبکههای عصبی مصنوعی (مورد: تهران)
Authors
Abstract:
گسترش سریع استفاده از شبکههای عصبی مصنوعی ( ANN) به عنوان مدل تجربی و کارآمد در علوم مختلف از جمله هواشناسی و اقلیم شناسی نشان دهنده ضرورت ارزش بالای مطالعه این مدلهاست. پیش بینی بارش برای اهداف مختلفی نظیر برآورد سیلاب، خشکسالی، مدیریت حوضه آبریز، کشاورزی و ... دارای اهمیت بسیاری است. هدف این مقاله پیش بینی بارش ماهانه با استفاده از شبکههای عصبی مصنوعی در شهر تهران میباشد. در این تحقیق از دادههای بارش ماهانه طی دوره آماری 53 سال (1951-2003) و شبکههای عصبی مصنوعی به عنوان یک روش غیر خطی جهت پیش بینی بارش استفاده شده است. نتایج این تحقیق بعد از آزمون شبکه با لایههای پنهان و با ضرایب یادگیری مختلف نشان داد که استفاده از شبکههای عصبی مصنوعی با یک پرسپترون 2 لایه پنهان با ضریب یادگیری 1/0 و مومنتم 7/0 مدل نسبتاً بهتری را ارائه میکند. ضریب همبستگی بین مقادیر واقعی ماهانه بارش و پیش بینی شده توسط شبکه بدون ترکیب با الگوریتم ژنتیک برابر با 88/0 و ضریب تعیین برابر با 77/0 میباشد. همچنین بعد از آموزش مجدد شبکه و آزمون شبکه با لایههای پنهان و ضرایب مختلف یادگیری در ترکیب با الگوریتم ژنتیک نشان داد که ترکیب شبکه با ویژگیهای مذکور با الگوریتم ژنتیک باعث کاهش خطا و افزایش سرعت محاسبات شده و مدل بهتری را ارائه میکند. ضریب همبستگی بین مقادیر واقعی ماهانه بارش و پیش بینی شده توسط شبکه برابر با 91/0 و ضریب تبیین برابر با 83/0 میباشد.
similar resources
پیش بینی بارش ماهانه با استفاده از شبکه های عصبی مصنوعی (مورد: تهران)
گسترش سریع استفاده از شبکه های عصبی مصنوعی ( ann) به عنوان مدل تجربی و کارآمد در علوم مختلف از جمله هواشناسی و اقلیم شناسی نشان دهنده ضرورت ارزش بالای مطالعه این مدل هاست. پیش بینی بارش برای اهداف مختلفی نظیر برآورد سیلاب، خشکسالی، مدیریت حوضه آبریز، کشاورزی و ... دارای اهمیت بسیاری است. هدف این مقاله پیش بینی بارش ماهانه با استفاده از شبکه های عصبی مصنوعی در شهر تهران می باشد. در این تحقیق از ...
full textپیشبینی بارش ماهانه با مدل ترکیبی شبکه عصبی مصنوعی-موجک و مقایسه با مدل شبکه عصبی مصنوعی
بدون شک اولین قدم در مدیریت رودخانه پیشبینی بارش سطح حوضه آبریز میباشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدلها هنوز هم به منظور تعریف چنین پدیدة پیچیدهای در زمینه مهندسی هیدرولوژیک توسعه داده میشوند. اخیراً شبکههای عصبی مصنوعی به عنوان یک برونیابی و درونیابی غیرخطی گسترده توسط هیدرولوژیستها مورد استفاده قرار میگیرد. در پژوهش حاضر، تجزیه و تحلیل موجک ...
full textپیشبینی بارش ماهانه با استفاده از الگوهای پیوند از دور و شبکۀ عصبی مصنوعی (مطالعۀ موردی: حوزۀ فلات مرکزی ایران)
تحقیق حاضر با هدف بررسی تأثیر شاخصهای پیوند از دور بر رخداد بارش ماهانه و پیشبینی بارندگی در حوزۀ آبخیز فلات مرکزی ایران با استفاده از مدل شبکة عصبی مصنوعی چندگامی مستقیم (DMSNN) با پارامترهای مذکور است. براین مبنا مقادیر بارش طی دورة مشترک آماری 1981-2014 در 20 ایستگاه سینوپتیک منطقۀ مورد مطالعه انتخاب شد، بهطوری که دورۀ آماری 1981- 2004 برای توسعة مدل و سالهای 2004-2014 جهت صحتسنجی مدل ب...
full textپیشبینی مقادیر بارش ماهانه با استفاده از شبکههای عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)
بارش یکی از مهمترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا میکند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامهریزی آبیاری و مدیریت حوضههای آبریز، اهمیت زیادی دارد. پیشبینی بارش در هر منطقهای نیازمند وجود دادههای دقیق اندازهگیریشدهای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیتهایی چون، نبود اطلاعات کافی در مو...
full textشبیه سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی(مورد: حوضه آبخیز فریدن)
سیل، یکی از پدیدههای ویرانگر طبیعی است که پیشبینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(MLP)، قانون یادگیری پسانتشار خطا(BP)، الگوریتم لونبرگ- مارکوارت(LM) و معیارهای RMSE و R2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...
full textMy Resources
Journal title
volume 42 issue 71
pages -
publication date 2010-11-22
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023